
A Data Processing and Analysis Testbed for WSNs:
Design and Implementation

Peng Cheng∗ Xianghui Cao∗ Jiming Chen∗ Kejie Cao∗ Youxian Sun∗ Xuemin (Sherman) Shen †
∗State Key Lab. of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China

† Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Abstract—In this paper, we design and implement a reliable
data processing and analysis testbed (NESCTB) for wireless
sensor networks (WSNs). It contains 36 wireless sensor nodes
connected through Ethernet to a central server so that, with web
interface, remote users are able to schedule tasks and monitor the
nodes operations online. In addition, reprogramming and data
logging can also be provided via the wired network. Powerful
data processing and analysis tools are developed for information
searching and processing, real-time topology visualization, 2-D
and 3-D viewing of statistical diagrams, snapshots and timing
sequences. The tools can significantly improve user-friendliness
and operability of the testbed. The application scenarios of the
testbed are discussed and a validation experiment for the referred
application case NESCSurge demonstrates the convenience and
effectiveness of NESCTB.

Index Terms—WSNs; testbed; data processing and analysis;
visualization

I. INTRODUCTION

Wireless sensor networks (WSNs) are composed of a num-
ber of autonomous and compact devices, called sensor nodes,
that have the capability of sensing, data processing, and com-
municating. The recent advances in fabrication, modern sensor
and communication technologies have attracted substantial
research and applications in WSNs [1], [2] and [3].

Considering the specific characteristics such as energy
constraint and distributed deployment, many new network
protocols and technologies have been proposed for WSNs [4].
Meanwhile, there are also various kinds of application oriented
algorithms designed and developed for WSNs. It is well known
that simulations are repeatable and scalable while experiments
are quite effective to check the effectiveness under practical
conditions. Thus both simulation and experiment are of great
importance to verify the protocols and algorithms.

NS2 is a widely used simulation tool for beginners [5]
while OMNET++ is more reliable and chosen by many
advanced researchers [6], [7] and [8]. Additionally, TOSSIM
and MATLAB are also useful software for simulation [9]. As
the assumptions and models are just approximations for the
practical conditions, simulations can not well handle imperfect
radio communication, hardware interrupts, real PHY/MAC
layer events, etc. Hence, it is necessary to employ physical
experiments. Furthermore, it is possible to obtain more precise
model for power consumption as well as packet timing.
Meanwhile, the experiments are also useful for detecting the
design limitations such as memory, bandwidth and reliability
[10]. Nevertheless, it is often time-consuming for setting a

Fig. 1. Physical deployment of NESCTB in Zhejiang University

specific large-scale experiment. As a result, it is of great
interest to set a large-scale testbed which is applicable for
different kinds of experimental requirements.

In this paper, as shown in Fig.1, we design and implement
a wired testbed (NESCTB) for WSNs, which is aimed to
conduct different general-purpose function tests. The testbed
is deployed in the Group of Networked Sensing and Control
(NESC)[11]. Currently, NESCTB has 36 nodes deployed in a
7m x 13m area in Zhejiang University, China.

Each node plugged with a sensor board and a MIB600 gate-
way is connected to the Ethernet for uploading/downloading
the data in order to reduce the interference. And the on-line
reprogramming provides great facility for experiment setting
via MIB600. The testbed is also scalable due to the universal
Ethernet interface. We may also deploy different nodes such
as Imote2 for establishing a heterogeneous wireless sensor
network testbed. Expedient software tools for data processing
and analysis are also well developed for the NESCTB. The B/S
3-tier model is utilized to guarantee the safety of the system
and the multiuser operation. Moreover, many statistical tools
are also provided such as information searching, overall real-
time linking graph, logic topology graph at a certain point of
time, 2-D and 3-D statistical diagram, snapshots and timing
sequences.

The remainder of the paper is organized as follows. Related
work on testbeds for WSNs are presented in Section II. In
Section III, the details of NESCTB including both hardware
and software are depicted and analyzed. Section IV discusses
the applications of NESCTB, especially for time synchroniza-

2011 Third International Conference on Communications and Mobile Computing

978-0-7695-4357-4/11 $26.00 © 2011 IEEE

DOI 10.1109/CMC.2011.99

475

tion test and routing protocol performance test. One validation
experiment is shown in Section V. Section VI concludes the
paper.

II. RELATED WORKS

In general, there are mainly two strategies for building
wireless sensor network testbeds: domain testbeds and plat-
form testbeds [12]. Domain testbeds focus on specific fields
of WSNs applications (e.g. health monitoring), most of which
are specially designed and fastened onto the particular applica-
tions. Platform testbeds pay more attention on the universality
and versatility access of WSNs so that it may provide open
and friendly interfaces for testing protocols or deploying WSN
experiments. So far, a lot of specific contributions have been
conducted for building testbed platforms, e.g., MoteLab from
Harvard University and Kansei from Ohio State University.

MoteLab deployed in Maxwell Dworkin Lab [13] is the
first in establishing the general concept of wireless sensor
network testbed, which sets up the 3-tier architecture and
open access design philosophy. It is comprised of remote
user window, central network server and downstream sensor
network, which aims to provide the public and reliable wireless
sensor network access. The key technology of MoteLab is the
integration of a set of open source tools such as Apache Web
engine, MySQL database, PHP frontplane and Perl backplane.
Multiple accesses are supported by MoteLab including remote
web login, backend database searching and direct sensor node
accessing.

Kansei is another well known testbed [14], developed for
providing mid-ware for 2-tier network of ExScal program.
Different from other Mote-like platforms, Kansei deploys a
real heterogeneous sensor network. For scalability, Kansei
integrates multiple sensor nodes in one downstream testbed
network, i.e., static network composed of 210 XSMs, portable
network used as a data collector in real environment, and
mobile network representing moving wireless sensing objects.
Another feature of Kansei is that its software platform director
is combined with real and library experiment data for building
a mixed simulation model of assigned objects.

There are several other testbeds, e.g., SignetLab from Uni-
versity of Padova, Italy [15] and WSNTB from National Tsing
Hua University [16], which possess a layered architecture
supporting interactive user interfaces and regular downstream
sensor networks. SignetLab provides a set of management
tools for testbed users to well perform management tasks,
while it also guarantees the extendibility by utilizing the
concept of function plugins. WSNTB constructs another kind
of heterogeneous network testbed with different sensor nodes
interconnected through standard interfaces and intelligent gate-
ways equipped with an MCU.

III. DESIGN AND IMPLEMENTATION OF NESCTB

NESCTB includes wireless sensor network among the nodes
for running the testing program and wired testing network for
requiring the data from nodes. Users can operate the testbed
through the central server equipped with web interface. The

Fig. 2. Physical and information flow architecture of NESCTB

complete architecture of the testbed system is depicted in
Fig.2, where the light lines are the physical connections with
cable while the bold lines are the information flow directions.
It can be seen that all the sensor nodes are connected to the hub
(Ethernet) via gateways and switches, meanwhile the central
server is connected to the hub (Ethernet). The users can also
connect to the hub with Internet.

The whole framework of the testbed is shown in Fig.2.
For the information flow directions, all the sensor nodes send
the required data to the central server for storing, and the
central server sends commands or reprogramming messages
to the sensor nodes to accomplish the task. On the other hand,
the user can send commands to the central server which re-
transmits the commands to the corresponding sensor nodes.
Moreover, the user can also conduct data researching, data pro-
gressing and analysis through the web interface programmed
by PHP.

A. Hardware Infrastructure

As the most important hardwares of wireless sensor net-
works, NESCMT and Micaz are selected as our sensor nodes,
which have the same radio frequency of RF transceiver. As
shown in Fig.III-A, NESCMT is a sensor node designed and
developed by the Group of NESC[11], which consists of a
7.3MHz ATMega128L processor and a Chipcon CC2420 IEEE
802.15.4 compliant radios. In the future, we shall add Imote2
equipped with CC2420 so that the testbed can be extended
to deal with experiments for heterogeneous sensor networks.
In addition, as the software environment for Imote2 (Linux)
is more powerful, it is expected the performance can also be
enhanced.

As the gateway, Crossbow’s product MIB600 plugged in
sensor node with 51pin interface is connected to a 10 Base-T
or 100 Base-T Ethernet with network interface. Due to the
wired network equipped with MIB600, the online reprogram-
ming and data processing can be conveniently realized, which
reduces the time for setting up experiments and analyzing data.

476

(a) Sensor nodes: NESCMT(left), Micaz(middle), Imote2(right)

(b) Gateway: MIB600

Fig. 3. Hardwares.

B. Software Design

The software platform of NESCTB is aimed for providing
an universal user interface as well as a powerful controller that
integrates separate hardware functionalities and unsystematic
information scraps. In brief, the software section should pos-
sess the following features: (1) the ability to access each node
embedded in downstream heterogeneous sensor networks,
which performs as an overall monitor collecting feedbacks for
debugging tasks; (2) an appropriate mechanism allowing for
direct or indirect reprogramming process for sensor nodes;
(3) a reliable data storage mechanism for guaranteeing the
integrity of tasks; (4) real-time data retrieving functions under
initiative process; (5) static data presented in a dynamic and
organized manner or other customized ways. Furthermore, the
testbed should be applicable for different environments.

The software platform with multiple original tools is well-
formed and light-weighted as a whole. Due to the application
of B/S 3-tier model instead of traditional 2-tier C/S model,
NESCTB can be deployed on the most existing platforms,
and be visited by accessing our Apache based controlling
server via internet. No other client-side plugins is needed to
execute the testbed tasks. We have also established 3 modules
for server-side transactions: central panel as a controlling
interface, MySQL database as the backend, peripheral C++
executables and system scripts as APIs, which have been
shown in Fig.4.

1) Central Panel: The central panel is the main part for
software platform, which is responsible for managing access-
ing services to databases or sensor nodes. It also provides

Tasklog View

Task Setup

Upload

Option

Directory

Execute Process

Terminator
Downstream

Network

Network State

Monitor

Result

Processing

Data Retriever

Task

Controller

Authority

Management

Daemon

Backend Database

Communication

Interface

Overall Linking

Graph

Logic Structure

2D&3D Statistical

Diagram

Snapshot

Timing Sequence

Searching Tool

Views

Node-timing

Search

Account Control

View

PHP Frontend

Background Modules

P
er

ip
h

er
al

 A
P

I
Fig. 4. The integral structure of the software

Web Page

Snapshots

Timing Sequences

Logical Structure Graph2-D & 3-D Statistical Diagram

Overall Real-time Linking Graph

Fig. 5. The main web and data processing tools

a Web based graphic user interface. PHP scripts are used to
generate dynamic Web pages, meanwhile Javascripts and Ajax
techniques are adopted for constructing complex applications.
After users login on the panel, they can select several modules:
task controller, network state monitor, data retrieving, result
processing views, and authority management, as shown in
Fig.5.

The functions and relations of the modules are summarized
as follows

477

• Task Controller: a module for users to select basic
options and customized settings for debugging tasks,
which include logging task history, customizing options,
uploading executables programs or scripts, browsing the
task directory, executing and ending the current object
process.

• Network State Monitor: a module for collecting basic
static information of downstream node networks. When
the users select certain nodes, the interface would display
a table of static information along with a map depicting
locations and states of the corresponding sensor node.

• Data Retrieving: a module similar to a library manage-
ment system which is designed for initial request for data
from databases.

• Result Processing Views: the most featured module of
software applications, dominated by piles of dynamically
generated diagrams and statistic maps realized by utiliz-
ing PHP and Jpgraph graphical library.

• Authority Management: a module for account manage-
ments and future security transactions.

2) Data Processing and Graphical Interface: One of the
most impressive features of NESCTB is the result processing
module for data processing and visualization. Due to the
complexity and heavy load of such data processing algorithms,
previous testbeds, especially the platform strategic testbeds,
seldom support these functions. There are only several applica-
tion cases which have involved homologous statistic libraries.

NESCTB has established five data and network operation
views in different manners, most of which are instantly
generated based on the data models involved in MySQL
database tables. When debugging objects are split into data
pieces and rebuilt into a complete realworld-like data model in
database, some of their statistics or logic features are distilled
to construct a graph representing the origin object. The views
are generally divided into two categories: real-time/snapshot
and timing sequence. Some views listed below are also shown
in Fig.5.

• Overall Real-time Linking Graph: When users make
requests for real-time downstream state information, the
corresponding view is drawn immediately in backend us-
ing Jpgraph graphical class, and then printed on screen or
into PDF files reserved for further reuse if necessary. On
this diagram, every static attributes (e.g., id, ip, location,
status, etc.) and some requested dynamic attributes (e.g.,
link-nodes, parent-ids, etc.) are listed in a separate area of
the canvas. A progress bar with colors is used to represent
different energy levels, while a LED-like status mark, and
ip strings are displayed around the corresponding node in
a network map.

• Logic Topology Graph: When a protocol is running
on NESCTB, attributes corresponding to each node and
link (or route) are stored into tables named ‘xx node’
and ‘xx link’. For example, when logic structures are
needed for analyzing algorithms of routings, the request
is accepted by pointing to a prepared Multi-tree followed

with a traversal sequence. A strictly structured logic
diagram is composed of common elements like ip and
links. Directed lines link parent and child nodes, and the
number of logic nodes involved can be as many as 36 at
a time.

• 2-D and 3-D Statistical Diagram: This is often used
as a powerful result analyzer after running programs. It
functions in two mechanisms: (1) the Jpgraph graphical
library has an embedded statistical diagram interface
(class), by which classes and objects are called; (2)
peripheral API of MATLAB, which will be discussed
below in detail.

• Snapshots: Snapshots are depicted by PHP and Jpgraph
similarly as for the above graphs. They are responsible
for network status at a certain point of time, which are
realized by spreading node-specific information on x-axis
of the diagram.

• Timing Sequences: They are also depicted by PHP and
Jpgraph. The timing sequences focus on the variation
with time during task slot, which spread timing-sequence-
specific data on x-axis.

3) Daemon: NESCTB has built a C++ daemon to achieve
better control of downstream networks, and the daemon is
designed to support communication between server-side panel
and sensor nodes via sockets and MIB600. As a background
program, it should be turned on before and during task slots
in order to answer any possible requests. When a message is
generated by MIB600 from the nodes, the daemon responds
immediately by pushing the message in a buffer, parsing its
format, converting received message into a compatible format,
and forwarding it to corresponding database. In reprogram-
ming cases, when some control commands are appointed, Dae-
mon achieves its targets by parsing, converting and forwarding,
which is the reverse of the accessing process. In short, Daemon
can be considered as a module of peripheral APIs, as they
share the same standard of NESCTB APIs.

4) Peripheral API: NESCTB includes API which can
briefly describe the interactive data and control command
transmission between Central Panel and peripheral auxiliary
executables or scripts. This module is designed to either make
customized interface compatible or expand NESCTB’s fea-
tures and application scopes. In this way, we have defined a set
of standards of interfaces embedded in NESCTB, and further
developed some program routines utilizing such interfaces.
Most of working loads are undertaken by Daemon module,
which works as a converter between different data formats.
As Daemon is developed as a part of API as well, the general
process of manipulating such peripheral interrupts resembles
that of communication between panel and downstream net-
works. In that case, the calling command format is cmd name
[target name· · ·] [num· · · location· · ·] [node id· · ·] [-x· · ·],
where [num· · · location· · ·] encloses number of involved
nodes and their locations if needed, [node id· · ·] encloses
corresponding IDs of objects, and [-x· · ·] is an optional
bracket where corresponding selected options from Central
Panel are reflected. For instance, in data-collection process,

478

the daemon is called in such format data2store [task name]
[ip[1], ip[2], · · ·] [-time], and in 2-D and 3-D Statistical
Diagram process, MATLAB library is called by exmatpaint
[nx, ny, x[1], x[2],· · · , y[1], y[2],· · ·] [z[1][1], z[1][2],· · ·].

Although separate views are attached to Central Panel, some
tentative ideas have been listed in the plan to further develop
the usability and robustness of NESCTB software platform. To
achieve real-time data retrieving, the process of data receiving
and dispatching is still to be developed to resolve heavy time
delay and data interference in the case of heavy load, which
could cause significant errors for testing results especially in
protocols emphasizing time synchronization. An initial ‘push-
and-pull’ mechanism has been introduced to the controlling
view of Central Panel by aiding data storing process. Under
normal circumstances, downstream nodes send messages in an
appropriate frequency (0.1s cycle time for example), while the
frontend makes low-frequency inquiries daemon for data. In
this sense, a daemon is an essential part responsible for sharing
load and separating intermediate stage from PHP frontend.

IV. APPLICATIONS OF NESCTB

The NESCTB can be used for a number of research related
to WSNs, ranging from data analysis, algorithm validating,
localization and security issues, to wireless protocol evalua-
tion. The platform is also powerful for the researchers to find
more interesting problems. To be concrete, two typical testing
applications are discussed as follows.

A. Time Synchronization Test

In order to reach a time synchronization within WSNs,
a number of protocols have been developed, including most
recent ones based on gradient clock [17] and consensus [18].
We can choose one of them as the test object to verify the
protocol’s mechanism and test its time-sync performance. The
main obstacle of Time-sync test lies in obtaining legal time
stamps of protocol, as well as computing the appropriate
time synchronization indicators to assess the performance.
Our nesC programs and corresponding application interface
provide a convenient tool to cope with this difficulty.. Given
the object of time-sync test, we can focus on the access to
time attributes involved in sending and receiving time stamps,
etc. Then real-time category data processing module is set to
work. During the task time slot of time-sync test, NESCTB
periodically calls the customized application interface, ana-
lyzes data, and obtains the variation of time deviation within
runtime of TPSN, so that the time synchronization mechanism
of the target protocol can be verified conveniently.

B. Routing Protocol Performance Test

The main performance indicators of WSN routing proto-
cols include delay and energy efficiency [19]. For instance,
regarding the energy efficiency, several energy-aware routing
protocols can be chosen as our test object [20]. We can
select the variation of energy levels as central attribute. In
the following programming of application interface, Typical
data attributes (such as residual energy, time stamp and path

Fig. 6. The sensor board MTS300CA connected to the NESCMT

length) are prepared as the main object. After the experiment,
the overall energy level curve and the diagram which depicts
the relation between unbalanced and balance energy variations
can be generated based on the recipient data and statistical
graph library. Hence the performance test of the protocol can
be achieved.

V. A VALIDATION EXPERIMENT

Surge, a net compact framework of TinyOS[21], is a
classical test program. According to the actual demands of
our experiments, we revise the classical Surge to be our
new NESCSurge which contains a new type of data unit
and an extra kind of stable data-sending path. First, like the
original Surge program, the nodes with NESCSurge would
self-organize a multi-hop network, sense light intensity and
send it to the server by choosing a route in the multi-hops
network. Second, we add voltage message to the data unit,
which means that the voltage level of each nodes could be
live displayed in the server. It is without question that, when
equipped with the proper sensors, we can get any kind of
data requested, like humidity, magnetic field intensity, location
information, etc. Third, despite the limits of the database node
(actually in this primary experiment, we only use a common
Micaz mote as the database node to get data units through
RF way). Furthermore, we can exactly plot the topological
structure of the multi-hop network with our new data unit and
cooperating data gathering tools in spite of the data unit loss
during the transition. In summary, most of the functions of
the TinyOS are tested in our NESCSurge, including sending
& receiving messages, reading the measured values, selecting
route, and communicating with computers. Both the hardware
and software tests have shown promising performance with
NESCSurge.

In our experiments, the sensor board MTS300CA is con-
nected to the node through the 51pin interface, as shown in
Fig.6. All the sensor nodes are deployed in a 4.8m × 4.8m
area. They collect light intensity, send their messages to the
sink node with wireless sensor network platform, and report to
the MIB600 with the more reliable and precise wired Ethernet
network. A lamp is placed on the laboratory table acting as
the light source, as shown in Fig.1. The data of every node
are gathered regularly and the values of light intensity in 2-D
and 3-D maps are depicted by the data processing tools, as

479

(a) 2-D statistical diagram

(b) 3-D statistical diagram

Fig. 7. Illustrative diagram of the light intense

shown in Fig.7. It can be observed that the data gathered and
depicted by our testbed correctly indicate the light intensity
from the view of both 2-D and 3-D statistical diagrams.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new testbed, NESCTB
for wireless sensor networks, deployed in Zhejiang University,
China. The main contributions are summarized as follows:

• Physical sensor nodes are employed to obtain realistic
and convincing data;

• Two networks are employed to enhance the performance:
one is wireless sensor network for running the testing
program while the other is wired testing network for
querying data from nodes, which reduces the interference;

• Web interface is provided for multi-user operation and
remote operation, including scheduling the job and mon-
itoring the experiment online;

• Powerful data processing and analysis tools are developed
for providing great convenience and facility for research.

Furthermore, NESCTB also provides an adaptable and prac-
tical platform for testing a number of difference experiments
and algorithms. Our future work will focus on heterogeneous
networks with different hardware and software systems such as
Imote2. We also plan to complete a universal program library
for frequently used tests such as time synchronization and
protocol tests.

REFERENCES

[1] I.F. Akyildiz, S. Weilian, Y. Sankarasubramaniam, and E. Cayirci. A
survey on sensor networks. IEEE Commununications Magazine, 40:102–
114, Aug. 2002.

[2] X.H. Cao, J.M. Chen, Y. Zhang, and Y.X. Sun. Development of
an integrated wireless sensor network micro-environment monitoring
system. ISA Transaction (Elsevier), 47(3):247–255, 2008.

[3] F. Zhao and L. Guibas. Wireless sensor networks. Communications
Engineering Desk Reference, page 247, 2009.

[4] W.L. Yeow, C.K. Tham, and W.C. Wong. Energy efficient medium
access control protocols for wireless sensor networks and its state-of-
art. IEEE Trans. Vehicular Technology, 56(2):918–928, Mar. 2007.

[5] Z.Y. Li and H.S. Shi. A data-aggregation algorithm based on adaptive ant
colony system in wireless sensor networks. In Proc. IEEE International
Congress on Image and Signal Processing, volume 4, pages 449–453,
Sanya, China, May 2008.

[6] A. Varga. OMNeT++. Modeling and Tools for Network Simulation,
pages 35–59, 2010.

[7] X.D. Xian, W.R. Shi, and H. Huang. Comparison of omnet++ and
other simulator for wsn simulation. In Proc. 3rd IEEE Conference on
Industrial Electronics and Applications, pages 1439 – 1443, Hyatt Hotel,
Singapore, June 2008.

[8] J.H. Zhang, J.M. Chen, J.L. Fan, W.Q. Xu, and Y.X. Sun. Omnet++
based simulation for topology control in wireless sensor network: a case
study. In Proc. IEEE International Wireless Communications and Mobile
Computing Conference, pages 1130–1134, Crete, Greece, Aug. 2008.

[9] W.Y. Chun, E. Noel, and K.W. Tang. The tag duplication problem
in an integrated wsn for rfid-based item-level inventory monitoring. In
Proc. 5th IEEE International Conference on Networked Sensing Systems,
pages 59–62, Kanazawa, Japan, June 2008.

[10] S. Bapat, W. Leal, T. Kwon, P. Wei, and A. Arora. Chowkidar: A
health monitor for wireless sensor network testbeds. In Proc. 3rd IEEE
International Conference on Testbeds and Research Infrastructure for
the Development of Networks and Communities, pages 1–10, Orlando,
Florida, May 2007.

[11] NESC. Homepage. http://www.sensornet.cn.
[12] A. Arora, E. Ertin, R. Ramnath, W. Leal, and M. Nesterenko. Kansei:

A high-fidelity sensing testbed. IEEE Internet Computing, 10(2):35–47,
March-April 2006.

[13] G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: A wireless
sensor network testbed. In Proc. 4rd IEEE International Symposium
on Information Processing in Sensor Networks, pages 483–488, Los
Angeles, California, USA, April 2005.

[14] E. Ertin, A. Arora, R. Ramnath, and M. Nesterenko. Kansei: A testbed
for sensing at scale. In Proc. 5th IEEE international conference on
Information processing in sensor networks, pages 399–406, Nashville,
TN, USA, April 2006.

[15] R. Crepaldi, S. Friso, A. Harris, M. Mastrogiovanni, C. Petrioli,
M. Rossi, A. Zanella, and M. Zorzi. The design, deployment, and
analysis of signetlab: a sensor network testbed and interactive manage-
ment tool. In Proc. 3rd IEEE International Conference on Testbeds
and Research Infrastructure for the Development of Networks and
Communities, pages 1–10, Orlando, Florida, May 2007.

[16] J.P. Sheu, C.J. Chang, C.Y. Sun, and W.K. Hu. Wsntb: A testbed for
heterogeneous wireless sensor networks. In Proc. 1st IEEE Interna-
tional Conference on Ubi-Media Computing, pages 338–343, Lanzhou
University, China, July 2008.

[17] Philipp Sommer and Roger Wattenhofer. Gradient clock synchronization
in wireless sensor networks. In Proc. International Conference on
Information Processing in Sensor Networks, IPSN ’09, Washington, DC,
USA, 2009.

[18] L. Schenato and F. Fiorentin. Average timesync: A consensus-based
protocol for time synchronization in wireless sensor networks. In Proc.
1st IFAC Workshop on Estimation and Control of Networked Systems
(NecSys09), 2009.

[19] K. Akkaya and M. Younis. A survey on routing protocols for wireless
sensor networks. Ad Hoc Networks, 3(3):325–349, 2005.

[20] M. Liu, J. Cao, G. Chen, and X. Wang. An energy-aware routing
protocol in wireless sensor networks. Sensors, 9(1):445–462, 2009.

[21] TinyOS. An open-source operating system designed for low-power
wireless devices. http://www.tinyos.net.

480

