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The advancements in robotics and wireless communications provide us with the opportunity to combine
the mobility and wireless sensor networks so that various objectives can be achieved simultaneously
with less required resources. Specifically, mobility enables sensors to dynamically adjust their positions
for better sensing quality, and offers a higher probability for guaranteeing the required coverage at the
same time. In this paper, we propose a novel coordinating scheme for autonomous mobile sensor net-
works to optimize the target sensing quality while guaranteeing the required coverage of the field of
interest. The whole problem is transformed into a finite horizon optimization problem, to which several
solving algorithms are designed. Extensive simulations demonstrate the effectiveness of the proposed
method.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction It is well recognized that target tracking performances largely
In the past decades, wireless sensor networks have been
becoming an effective and promising technology for long-term,
unattended field monitoring. For a number of applications, sensors
are not only required to provide direct measurements, but also to
properly actuate so that certain performances can be improved
while the system flexibility and robustness can be guaranteed.

Target tracking is a critical problem in the field of sensor
networks [1–3]. Commonly, static sensors are deployed to detect
mobile objects. After receiving the information captured by the sen-
sors, some fusion strategies can be applied to abstract the desirable
target state (e.g., location and velocity, etc.) in a center node, which
can be the head of activated sensors for tracking [4]. However, for
such kind of networks, in order to improve the tracking perfor-
mance, we have to either enhance the capability of individual sen-
sors or densely deploy more static sensors at the cost of more energy.

Usually, a target can be categorized into two classes, i.e., coop-
erative target and non-cooperative target. The former one can emit
cooperative signals (e.g., radio frequencies, vibrations, and sound,
etc.) from time to time, which can be interpreted by the sensors.
On the other hand, in a lot of applications, many intelligent target
would not emit such kind of signals, and the sensors have to ac-
tively detect the target by frequently broadcasting certain signals,
such as infrared or ultrasonic waves. In this paper, we mainly focus
on tracking the non-cooperative target.
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depend on both the sensing models and the target maneuvering
model. The radio signal strength (RSS) information is widely used
in sensor network based tracking system for approximating the
distance between sensor nodes and the target. However, the RSS
can only provide a highly coarse estimation of distance and re-
quires cooperative targets.

Providing that the target is non-cooperative, there are only a
few sensing techniques available for the sensors. Typically, if there
is no strong assumptions imposed on the target model such as a
constant velocity, a lightweight camera is preferred to provide
the target bearing relative to the sensor itself. Note that such a
measurement is incapable of estimating the distance between
the sensor and the target. Alternatively, ultrasonic sensors are
accurate for estimating the relative distance but can only provide
a poor estimate of the target bearing. Therefore, in this paper, we
consider the mobile sensors equipped with both camera and ultra-
sonic sensing modules, which means they can sense both the dis-
tance and the bearings of the target at the same time.

Consider a wireless sensor network based tracking system as
illustrated in Fig. 1. Due to limited capability of the sensors, though
a target’s presence can be known exactly, it may not be identified
or even captured as high sensing quality is required. However, once
the sensor network is deployed and keeps static, a target, if given
enough intelligence, could be easier to find a path across the field
of interest (FoI) and keeps the sensors’ views obscure, unless the
sensors are dense enough. In this case, the mobile sensors are pre-
ferred, which are able to dynamically adjust their positions accord-
ing to the target movements. Furthermore, the mobility of sensors
can also help them to improve their sensing quality at the same
time.
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Fig. 1. An illustration of the mobile tracking system based on wireless sensor
network.
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It is well known that the mobility of sensors provides great
opportunity for the enhancement of performance of sensor net-
works [5–9]. At the same time, it also introduces different kinds
of design challenges. Specifically, for mobile sensor networks, it
is of great importance to design a dynamic, distributed moving
strategy based on the current state-of-the-art fusion technologies
so that the sensing quality can be improved. One challenge is that
the coverage state may change along with the movement of sen-
sors. For example, if sensors decide their moving strategies just
for improving the sensing quality, then all the sensors may gather
together to the target vicinity as they do not consider the global
area coverage, leaving a large part of the area uncovered. Extre-
mely, if one target shows up at the boundary of the FoI, and moves
along one side of the boundary randomly, in the purpose of only
achieving optimal sensing quality, all the sensors will probably
move towards the target without considering other parts of FoI.
At this time, other intruders from the other side of the boundary
will keep blind to the sensors, which indicates the failure of the
whole monitoring and tracking system. In addition, there are also
cases that a subset of the mobile sensors can provide a desired
sensing quality, while the other sensors, which will only provide
marginal improvement to the sensing quality, can serve to ensure
coverage of the FoI. Therefore, with the help of mobility, it is pos-
sible and necessary to develop a strategy that jointly considers
both sensing and coverage performances simultaneously.

As widely used in many tracking systems with wireless sensor
networks, a center node, either dynamically elected or statically
assigned, can receive all sensors’ measurements and perform data
fusion algorithms to obtain the target location. For example, a
group leader is elected each time by activating sensors for the tar-
get localization. The leader’s tracking information is handed over to
another newly elected sensor [10]. In this paper, we also assume
the existence of the center node, which can decide the moving
strategies for the sensors in addition to localizing the target.

The remainder of this paper is organized as follows. A brief lit-
erature review is presented in Section 2. Section 3 presents the
problem formulation. Section 4 gives a detailed description of the
finite horizon optimization algorithm, following which the perfor-
mance is discussed. The simulation results are shown in Section 6.
Finally, Section 7 concludes this paper.

2. Related works

There have been many practical applications of target tracking
with wireless sensor networks. For example, underwater mobile
vehicles equipped with reconfigurable sensor arrays can be em-
ployed to monitor the ocean environment [11]. By introducing vir-
tual bodies and artificial potentials, an adaptive gradient climbing
method is proposed for seeking the local maxima or minima in the
field of interest.

Considering the problem of cooperatively coordinating a group
of mobile robots for localization in 1D and 2D space, Zhang et al.
propose a framework for active perception. The performance is
measured by the estimate quality of team localization, which relies
on the sensing graph and shape of formation [12]. The authors
incorporate the formation geometry by using a gradient based
scheme in order to improve the localization performance. The
authors in [13] investigate two typical multi-robot coordination
problems. Specifically, the robot game is modeled as a hybrid sys-
tem and the control inputs are calculated by solving a mixed inte-
ger linear program. Meanwhile the leader–follower formation
control problem is dealt with by utilizing the model predictive
control.

The multi-agent rendezvous problem is summarized in [14],
which aims to design local control laws for each agent so that all
the agents eventually rendezvous at a single unspecified location.
Note that in their setting, each agent cannot actively communicate
with each other but just continuously track the positions of all
other agents within its sensing region. The authors propose two
kinds of strategies, i.e., one depends on a common clock while
the other can be implemented without referring to a synchronized
clock.

Our previous work [10] has developed a target tracking and
capturing system by using a sensor network and mobile wheeled
robots. Specifically, the target state is estimated by static sensors,
and the wheeled robot is coordinated to capture the evading target
with the help of the communication network. Li et al. further con-
sider an non-cooperative target by using ultrasonic modules [15].
The authors also propose an integrated strategy which allows the
mobile sensors to move according to the sensing quality, commu-
nication quality and area coverage [16]. Note that, in [16], these
three performance metrics are combined together with weighting
factors and the problem is solved with a gradient–descent method.
There are also some strict assumptions on the motion of the target
and the sensors.

The mobility of wireless sensors have also been explored in the
literature. Wang et al. survey the recent sensor motion strategies in
order to enhance the quality of observation of the field of interest
[17]. A virtual force algorithm is designed to improve area coverage
by moving sensors [18]. In [19], in the purpose of prolonging the
network lifetime, the authors propose an approach to optimize
sensor locations in mobile sensor networks. However, it is still an
open issue on the sensor movement strategies in the scenario of
target tracking with ensured coverage.

In this paper, we aim to extend the idea of [16] in two aspects.
First, we intend to design the coordinative moving strategy which
minimizes the sensing quality while guaranteeing specified cover-
age quality, which is more applicable and easier to understood. It
should be noted that more performance metrics can also be
adopted as constraints, but for clarification, here we just take the
sensing quality and coverage quality into account. Second, we will
consider the moving strategy over more than one step so that the
mobility of the whole network can be fully utilized. We will show
that how such a framework can tackle the difficulty of fast target
tracking and slow mobile sensors.

The major contributions of this paper can be summarized as
follows:

1. Different from [16], we take both sensing quality and area cov-
erage into consideration. We formulate the problem into one
which aims to optimize the sensing quality while guaranteeing
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certain coverage requirement. The framework can be easily
extended to adopt more performance metrics, e.g., connectivity
among mobile sensors

2. We take the advantage of sensors’ mobility in solving the opti-
mization problem. We utilize the predicted positions of target
in a finite horizon to decide the moving strategy of the mobile
sensors so that long-term sensing quality can be improved,
especially for the case when the speed of the target is compara-
ble or even faster than the mobile sensors.

3. The performances of the proposed method in various aspects
are discussed. We also give some guidelines about how to solve
the whole problem in a decentralized way.

3. Problem formulation

We assume that M mobile sensors1 are deployed in the field of
interest (FoI) for cooperatively monitoring and estimating the state
of the detected targets. Suppose that each sensor has a detection
range within which the presence of the target is known exactly.
However, the sensing quality of each individual sensor, which will
be defined in the following, is tightly related to the distance between
the sensor itself and the target. For simplicity, we assume that the
sensors are capable of detecting the boundaries of FoI and staying
within it automatically. Note that the target does not need to be
cooperative.

Suppose the target moves according to the following dynamic
process defined in the discrete-time domain

x½kþ 1� ¼ Fx½k� þW½k� ð1Þ

where x½k� 2 Rn is the process state in step k; F 2 Rn�n is the linear-
ized process model matrix, and W[k] represents the model uncer-
tainty. As a simple example, if the target moves with a constant
velocity, the state of the target can be its geographical position,

i.e., x½k� ¼ xt ½k� yt ½k�½ �T . In this paper, supposing the target can
change its velocity from time to time, we consider a more compli-

cated second-order state, i.e., x½k� ¼ xt ½k� _xt½k� yt½k� _yt½k�½ �T ,
where _xt and _yt are the speed in horizontal and vertical directions2

respectively.
Due to the limited capability of each sensor, its measurement of

the target is coarse, which is given by

yi½k� ¼ di½k� hi½k�½ �T þ Vi½k� ¼
: Hi½k�x½k� þ Vi½k� ð2Þ

where yi½k� 2 R2 is the observation vector for sensor i, di and hi are
the distance and bearing of the target accordingly in view of the
sensor. Hi[k] is obtained by linearizing the equation according to
[20]. In the above, W and Vi, i = 1,2, . . . ,M, are assumed to be
zero-mean white noises which are independent from each other,
with covariance matrices, Q[k] and Ri[k] accordingly. In this paper,
the sensory measurement uncertainty, {Ri}, is modeled as follows

Ri ¼ EfVi½k�V0i½k�g ¼
ri

range

� �2
0

0 ri
bearing

� �2

2
64

3
75 ð3Þ

where ri
range

� �2
stands for the variance of the range measurement

noise, and ri
bearing

� �2
denotes the variance of the bearing measure-

ment noise. Specifically, ri
range

� �2
and ri

bearing

� �2
can be modeled

by two functions fr(di) and fb(di), respectively, where di is the dis-
tance between the target and the ith sensor. As for commonly used
lightweight camera, there exists an optimal observing distance from
1 Indexed from 1 to M.
2 Possibly, one can consider higher order of the state of the target which could

move with time-varying accelerations.
the target, such that either farther or closer to the target will cause
the observation obscure.

It should be noted that both yi[k] and Vi[k] are defined in a polar
coordinate system with the ith sensor’s location (xi[k], yi[k]) as the
origin. Therefore, all the sensory measurements cannot be directly
fused. We need to first transfer them into a uniform coordinate
system. Supposing that the sensors are aware of their geographical
locations, we can define the uniform horizontal and vertical axes
without difficulties. After some simple manipulations, the mea-
surement function can be transformed from the polar coordinates
to the rectangular ones. Particularly, the measurement noise
covariance Ri can be obtained as

Ri½k� ¼ TiRi½k�TT
i ð4Þ

where

Ti ¼
cosðhiÞ � sinðhiÞ

sinðhiÞ cosðhiÞ

" #
ð5Þ

There are different ways to integrate the sensory information, such
as Kalman filtering [21,22], particle filtering [23], etc. Here we as-
sume that the measurements will first be processed locally at each
sensor. With the above target model and measurement, each sensor
can estimate and predict the target’s state recursively by using the
well-known Kalman filtering. The main results can be presented as
below.

x̂i½kjk� 1� ¼ Fx̂i½k� 1jk� 1�

Pi½kjk� 1� ¼ FPi½k� 1jk� 1�FT þ Q ½k�

Ki½k� ¼ Pi½kjk� 1�HT
i ðHiPi½kjk� 1�HT

i þ RiÞ�1

Pi½kjk� ¼ ðI � Ki½k�HiÞPi½kjk� 1�

x̂i½kjk� ¼ x̂i½kjk� 1� þ Ki½k�ðyi½k� � Hix̂i½kjk� 1�Þ

where x̂i½kjk� 1� :¼ Efxi½k�jyi½0�; . . . ; yi½k� 1�g is the predicted tar-
get state form the sensor view at step k � 1, while x̂i½kjk� :¼
Efxi½k�jyi½0�; . . . ; yi½k�g is the estimated state. The corresponding pre-
diction and estimation error covariances are denoted by Pi[kjk � 1]
and Pi[kjk], respectively.

Once the estimates and predictions of the target have been ob-
tained, each mobile sensors need to share its own information with
other nodes (see Section 4) to derive more accurate target state.
Typically, the collective estimate and prediction can be obtained
by using the following fusion algorithm.

P�1 ¼
XM

i¼1

P�1
i ð6Þ

x̂ ¼ P
XM

i¼1

P�1
i x̂i ð7Þ

where x̂ and P are the fused state estimate and the error covariance
accordingly3. Note that such a strategy utilizes the computation and
memory capacity of mobile sensors, and hence we can estimate and
predict the distances between the sensors and the target. Subse-
quently, the sensing noise covariances Ri and whereafter the follow-
ing sensing quality [20] can be obtained.

Jsense :¼ det
XM

i¼1

R�1
i

 !�1
2
4

3
5; ð8Þ

where det[�] means the determinate of a matrix.

3 If the right side terms are estimates of the sensors, then x̂ and P correspond to

fused estimate. Otherwise, they correspond to fused prediction.
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Clearly, by directly optimizing Jsense, we may obtain a moving
strategy which drives all the mobile sensors to approach the target
as close as possible at the next step4.

As discussed above, we are going to jointly consider the sensing
quality and coverage quality. The area coverage can be evaluated as
follows

Jcov ¼
Acov

Atot
ð9Þ

where Acov is defined as the area covered by at least one sensor and
Atot means the total area of the FoI. Undoubtedly, Atot is determined
initially once FoI is defined, while Acov depends on the locations of
the mobile sensors.

Denote the moving strategy of all the mobile sensors by H,
which can contain their velocities and accelerations. We are inter-
ested in the following problem.

Problem 3.1. Find the optimal H that solves

min Jsense

s:t: Jcov P U

(
ð10Þ

where U is a given requirement for the area coverage.
Note that all the above functions are all time varying. Usually, it

is untractable to completely solve Problem 3.1 in an infinite hori-
zon sense. Moreover, due to possibly high maneuverability of the
target and the model noise W[k] in (1), the error of the model
based prediction of the target’s location augments along the time.
In this case, deciding moving strategy for a sensor accounting for
infinitely long time is unnecessary and practically infeasible.
Therefore, we try to solve the problem in a finite horizon with
the hope of finding a balance between computation complexity
and the performance.

4. Finite horizon optimization

Considering a fixed finite horizon window L P 1, we solve Prob-
lem 3.1 dynamically. At each step k, we calculate the moving strat-
egy H = {Hk,Hk+1, . . . ,Hk+L�1} for all the sensors in the consecutive
time steps from k + 1 to step k + L so that the average sensing qual-
ity from k + 1 to k + L is minimized while the average coverage con-
straint is satisfied. And then, we select the best subset of all the
sensors to move eventually.

In this section, we first investigate the case when L = 1 and only
one sensor can move at each step, following which we consider the
general case in which L P 1. Finally, we extend the results to
allowing more sensors to move at each step, and prove how much
improvement can be provided.

4.1. One-step optimization

First of all, we focus on the one-step optimization, which aims
to find out the best sensor at each time k that solves the following
optimization problem (a variant of Problem 3.1).

min
Hk

Jkþ1
sense

s:t: Jkþ1
cov P U

8><
>: ð11Þ

Chung et al. has proposed a gradient descent based method for
purely optimizing Jsense [24]. Considering the range and bearing
coordinates in the polar coordinate system, i.e., di and hi for the
ith sensor, the gradient of Jsense can be expressed as
4 In fact, because of the measurement noise, they are not necessary to approach the
target as close as possible, but maintain certain distances governed by the
measurement noise
rri ;hi
Jsenseðri; h1; . . . ; rM; hMÞ ¼

@Jsense

@ri
eri
þ 1

ri

@Jsense

@hi
ehi

ð12Þ

Then the local motion of sensor i can be obtained by

usens;iðri; hiÞ ¼
@Jsense

@ri

� �
;
1
ri

@Jsense

@hi

� �� �
ð13Þ

where

usens;iðxi; yiÞ ¼ TT
i usens;iðri; hiÞ ð14Þ

In order to account for the area coverage, we first introduce the
function Xi(xt,yt) = X(xt,yt,xi,yi,ri) to represent if the target location
(xt,yt) is within the detection range ri of sensor i which located at
(xi,yi), i.e.,

Xiðxt ; ytÞ ¼
1; kðxt; ytÞ � ðxi; yiÞk 6 ri

0; otherwise

�
ð15Þ

where k�k represents the Euclidean distance between two points in
the FoI.

For evaluating the coverage quality, Jcov can be calculated
according to (9)

Jcov ¼
1
A

I
A

1�
YM
k¼1

ð1�Xkðx; yÞÞ
" #

dxdy

¼ 1� 1
A

I
A

YM
k¼1

ð1�Xkðx; yÞÞdxdy; ð16Þ

where M is the number of sensors in the area A. Note that 1 �Xi = 0
when the point (xt,yt) is within the detection range of sensor i.

At this point, we are ready to present the one-step optimization
algorithm, whose main procedures are summarized in Algorithm 1.
Note that the lower bound for coverage, i.e., U, should not be too
large in order to avoid that the condition may always be violated.
Meanwhile, we may also dynamically tune the parameter U to bal-
ance the sensing quality and area coverage without any difficulty.

Algorithm 1. One-Step Optimization

Require Coverage Constraint U
calculate the gradients of Jsense;
sort the sensors according to the gradients;
for i = 1 : M do

check whether the coverage constraint U is satisfied;
if true then;
select output sensor i;

end
end
4.2. Multi-step optimization

We can further improve the performance by utilizing the multi-
step predicted values of the targets. Specifically, we hope to find
the best sensor at time k, so that the average sensing quality in
the consecutive L steps is minimized while the average coverage
requirement is still satisfied. The optimization problem is as
follows.

min
Hk

1
L

PL
i¼1

Jkþi
sense

s:t: 1
L

PL
i¼1

Jkþi
Cov P U

8>>><
>>>:

ð17Þ

It is not difficult to extend the results of Section 4.1 to solve the
above problem. It is interesting that Jkþi

cov ¼ Jkþ1
cov ; i ¼ 2;3; . . . ; L. Thus

we only have to deal with the average sensing quality, i.e.,
1
L

PL
i¼1Jkþi

sense.
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Note that when the predicted positions of the target are taken
into account, it is possible to evaluate how the current motion
would affect the sensing quality not only at the next step but also
at the consecutive finite steps. Hence it is expected that the long-
term average sensing quality can be improved. It should be empha-
sized that in (17), Jkþi

sense is the value calculated from the time k with-
out considering the possible movement of other sensors in the
consecutive later time steps.

It should be pointed out that we may not need to consider a
large length of finite horizon. For example, if the speed of sensor
is less than the target, then after a certain period, no matter how
to move the sensor, it would be becoming far away from the target.
In this case, there might be a threshold Lm, which has taken use of
all the predicted information so that, no obvious improvement will
be gained by further enlarging L.

4.3. Multiple sensors

Until now, we just consider the case that only one sensor can
move at each step. The method can be adapted to allow multiple
sensors to move simultaneously. To this end, we need to calculate
the gradients of Jsense according to different subset of mobile sen-
sors, and choose the best subset which minimizes the gradient
while maintaining the coverage requirement. Then one normal
question is how to decide the required number of sensors which
are allowed to move at each time step.

In general, the performance of both tracking and coverage
would get improved by allowing more sensors to move at each
time step, while the computational complexity will also increase
dramatically at the same time. On the other hand, the improve-
ment of performance will not be obvious once the number of sen-
sors, which are allowed to move collaboratively, is larger than a
threshold. For given speed value of target and sensors, by simula-
tion, we can find a suggesting number of sensors which are able
to guarantee required tracking and coverage performance. More-
over, in practice, we can further increase/decrease the allowable
number of sensors according to the on-line performance. We will
show in Section 6 how the number of sensors selected at each time
affect the overall performance.
5. Performance discussions

There are some key factors which affect the whole system per-
formances, such as the number of mobile sensors, the speed of the
target as well as that of the sensors, the detection range of the sen-
sors, and the coverage requirement, which in all makes an analyt-
ical performance evaluation very hard. In this part, we aim to
discuss how those factors would affect the performance and shed
light on the energy consumption, computation complexity, scala-
bility, etc.
5.1. Tracking and coverage performance

Consider the extreme case that the FoI can always be fully cov-
ered no matter how the sensors move, i.e., the area coverage is en-
sured. Even for this simple case, it is still quite difficult to give an
analytical expression of the achievable sensing quality. Therefore,
consider two typical cases as follows.

1. The speed of target is neglectable compared with that of the
sensors. In this case, the sensors can move into their aimed
positions without worrying about the time cost, as if the tar-
get almost remained at the same place. Thus, there would be
no need to further utilize the predicted position of the target,
and it would be understandable that the one-step optimization
would be enough to obtain the optimal solution. Furthermore,
in this situation, once the target has been detected, the sensing
quality, i.e., Jsens, would almost be the optimal one at all time.
Moreover, such a strategy also guarantees that the average
sensing quality is very close to the optimal one.

2. The speed of target is not neglectable compared with that of the
sensors. In this case, the target would move a considerable dis-
tance when the sensors are adjusting their positions. Hence, the
decision of mobile sensors should not ignore the moving pat-
tern of the target. Suppose the predicted positions of the target
are accurate enough in the next consecutive time steps, then by
solving (17), the algorithm can move those who are located
near those predicted positions in advance. This can be imple-
mented by utilizing the communication to compensate the
shortcoming of sensors speed and hence improve the average
sensing performance as it is impossible to instantly reduce
the current tracking error.

If the coverage constraint is taken into account, the situation
would become much more complicated. Generally speaking, in or-
der to improve the sensing quality, the sensors would like to ap-
proach the target, hence reduce the coverage performance. From
this aspect of view, it is expected that the proposed algorithm
would gradually reduce the coverage performance which can be
shown in the simulation part.

5.2. Energy consumption

Consider the energy cost for mobility. It would be desirable to
move as less sensors as possible so that the energy expenditure
for moving, communication and computation can be saved and
hence the network lifetime can be prolonged. In order to save both
moving and computation energy, the number of sensors, which are
allowed to move at each time step, should be reduced as long as
the performance requirement can be satisfied. Hence once the re-
quired sensing quality has been met, we may reduce the number
of sensors allowed to move at each time so that the energy cost
can be reduced. Practically, a dynamic scheme can be used so that
the number of sensors can be changed at each time step according
to the performance achieved. In the simulation part, we will show
how the number of moving sensors at each time affects the sensing
quality as well as the area coverage.

The communication energy is mainly consumed for information
collection and motion coordination. The mobile sensors are re-
quired to report its information to the sink node periodically at
each time step, while the sink node will coordinate the correspond-
ing nodes to move after information fusion and on-line optimiza-
tion. Therefore, in order to save the communication energy, it is
always better to reduce the sampling rate once the required track-
ing performance can be satisfied.

5.3. Computation complexity

The complexity of the algorithm depends on two aspects: (1)
The computation complexity of Jcov grows with the total number
of sensors in the area. However, once the area can always be cov-
ered, there would be no need to calculate Jcov any more. It should
be emphasized that by revising the definition of Xi accordingly,
(16) can still be used for different kinds of sensing shape. (2) The
computation complexity of the gradients grows with the number
of sensors in the area, the number of sensors which are allowed
to move at each step, and the time horizon L.

Normally, for monitoring with mobile sensors, the number of
sensors in the FoI can be considered the same all the time. On
the other hand, the number of sensors allowed to move at each
step and the time horizon L also contribute on the sensing and area
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coverage performance, thus it is interesting and meaningful to
balance the performance and computation complexity by properly
choosing these two parameters.

Currently, it is still too difficult to give an analytical expression
for the two parameters in advance. Basically, when the speed of
target is too small compared with that of the sensors, L can be
set to 1 without loss of generality. On the other extreme when
the speed of target is too large, we may use a moderate L as the mo-
tion of a currently nearby sensor cannot affect the sensing perfor-
mance after a long time because the target has been out of its
detection range.

5.4. Scalability

Note that the proposed algorithms in these paper are central-
ized solutions. There are two constraints for centralized algo-
rithms, i.e., the access to global information, and the
computational burden. In this paper, we mainly focus on the case
when the communication and computation is much faster than
the motion of target and sensors so that the problem can be solved
in a centralized way. However, for large-scale wireless sensor net-
works, a centralized computation and coordination would become
impractical. In this case, since the movement of target would be
not so fast to cover the whole area of all sensors, we may be able
to dynamically select a cluster according to the position of target
so that the task can be realized within the cluster while the task
itself can be relayed between two clusters.

5.5. On relaxing the assumptions

As the communication is fast and the communication range is
large compared with the motion of target and sensors, the assump-
tion of a fully connected communication graph is not so conserva-
tive, and thus the full information can be utilized to achieve the
optimal solution at each time step. However, if the assumption is
removed, the sensors have to made their decisions based on their
local information.

In this case, we can extend the results above in a simple way.
For example, for one-step optimization, we can simply rewrite

the constraint of coverage to be Akþ1
cov P f Ml;A

k
cov

� �
, where Akþ1

cov rep-

resents the area covered by the local subset of sensors containing
Ml sensors). This new constraint means the local subset of sensors
must guarantee certain covered area at the next time step which
relates to the number of local sensors and previous covered area.
Meanwhile, the objective function can be modified for the local
subset of sensors.

6. Simulations

We conduct extensive simulations to validate our design and
evaluate the performances of the proposed algorithms. In a
50 � 50 2D FoI, totally 9 sensor nodes are deployed, each of which
carries both a lightweight camera and an ultrasonic sensor. All
their detection ranges are 9, i.e., "1 6 i 6 9, ri = 9. Initially, the sen-
sors are uniformly distributed within the FoI with coverage 84%,
which is also the best coverage that the sensors are able to achieve.
The coverage threshold of the FoI is 70% of the best coverage, i.e.,
U = 58.8%. The target moves simply from the bottom left corner
to the top right corner with a constant velocity. For the target
movement model as shown in (1), the parameters are set as

F ¼

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

2
6664

3
7775; Q ¼

1 1:5 0 0
1:5 3 0 0
0 0 1:5 1:5
0 0 1:5 3

2
6664

3
7775:
The sensors’ measurement noises variances are

frðdiÞ ¼ a2jdi � a1j þ a0;

fbðdiÞ ¼ afrðdiÞ;
prediction, where vs = 0.1, vt = 0.1.
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with a0 = 20, a1 = 5, a2 = 0.8 and a = 0.01. Obviously the optimal
observation distance is 5.
Fig. 3. Performances with and without prediction under single-sensor case, where
vs = 0.02, vt = 0.1.
6.1. Performances of Algorithm 1

We first consider the case that the target moves at most as fast
as the sensor. Let the target’s speed vt = 0.1 and the sensors’ speed
Fig. 4. Performances comparison between single-sensor and multi-sensor cases
with and without prediction, where vs = 0.02, vt = 0.1.
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vs = 0.1. Algorithm 1 is applied for the single-sensor case, i.e., only
one sensor is allowed to move at each step. As can be observed
from Fig. 2(a), the optimization force the sensors to move close
to the target to improve sensing quality. Because of both the
bounded coverage and limited speed, the sensors cannot get any
closer to the target at each moment, resulting that the sensing
quality first decreases and then increases, as shown in Fig. 2(b).
Apparently, when the target moves to the center of the FoI, its
average distance from the sensors is the smallest, and thus the
sensing quality is roughly the best. From Fig. 2(c), we can conclude
that the sensing quality is improved at the cost of degrading the
coverage quality. Fortunately, as a lower coverage bound is guaran-
teed, the whole system is actually dynamically optimized by taking
the advantage of the mobility of sensors.

6.2. The effect of multiple sensors

When the speed of target is considerable, selecting only one
sensor in each step may not be enough. In this case, we move mul-
tiple sensors at each time by exploring the cooperation among the
mobile sensors. We independently conduct three more groups of
simulations in which 1, 2 and 3 sensors can move at each time,
respectively. From Fig. 2, it is clear that the benefit of using multi-
ple sensors is obvious since the sensing quality is improved almost
all the time with guaranteed coverage bound. Moreover, we can
see that the more sensors move at each time, the better sensing
quality can be achieved. However, such improvement becomes
trivial when more than 3 sensors move at each time.

6.3. The effect of multi-step prediction

When the target moves faster than the sensors themselves, the
current state estimate would not be enough to guide the move-
ment of sensors, and is likely to lose the target. This may be tackled
by further utilizing the predicted positions of the target. By apply-
ing our multi-step optimization method, the sensing quality can be
improved. The simulation results for single-sensor case are shown
in Fig. 3, where the target and sensors speeds are set to be vs = 0.02
and vt = 0.1 respectively. For the multi-step method, L is set to be 3.
Since the sensors move much slower compared with the target,
moving only one sensor at each time is far from enough for the
requirement of tracking performance. And that is why the sensor
traces are very similar with and without predicting the target’s
location in the multi-step method. However, even for this case,
we can still observe that the sensing quality is improved by
employing the predictions from Fig. 3(b). The effectiveness of using
the predictions is more clearly shown under the multi-sensor case,
as in Fig. 4. Intuitively, we can say that comparing with the multi-
step optimization, single-step optimization falls short-sighted.

From Fig. 4, it can be observed that even for the case when the
speed of sensors is much less than the target, cooperatively moving
strategy does provide much better performance. What’s more, by
taking the predictions of target state into account, the tracking per-
formance can be further improved.

7. Conclusion

In this paper, we propose a gradient-based motion control strat-
egy, for target tracking with mobile sensors, which also takes the
area coverage into consideration. The mobility of sensors is ex-
plored to improve the sensing quality while guaranteeing the cov-
erage requirement. We investigate how the finite optimizing
horizon affects the sensing quality as well as the area coverage.
Moreover, we examine how to collaboratively move multiple
sensors so that the sensing quality can be improved even if the sen-
sors’ speed is not comparable to the target’s.

Our future work includes relaxing some assumptions, e.g., using
more realistic, possibly more complex, models for the target and
sensors, designing decentralized algorithms, and conducting
experimental validations.
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