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Abstract—The information of target size is useful for a lot of
target tracking applications of wireless sensor networks, however,
it has been neglected in most existing work. This paper considers
the problem of target tracking with size estimation by ultrasonic
sensors, which are able to measure the relative distance with
satisfactory accuracy. We first propose a recursive algorithm
for single target tracking and size estimation by adopting the
Extended Kalman Filter (EKF) method. For the multiple-target
case, a novel target identification algorithm, which aims to
minimize the consecutive square estimate error, is given to track
multiple targets and estimate the corresponding size simultane-
ously at each time step. Extensive simulations demonstrate the
effectiveness of the proposed algorithms.

Keywords-target tracking; ultrasonic sensor; target size; ex-
tended kalman filter

I. INTRODUCTION

The rapid advances in micro-electro-mechanical systems
(MEMS) technology, digital computing technology, and wire-
less communication technology have attracted substantial re-
search in wireless sensor networks (WSNs). The applica-
tions of WSNs can be found in a number of areas, such
as environment surveillance, health-care, automobiles, power
distribution, industrial automation, etc. [1]. Target tracking is a
fundamental requirement for the applications mentioned above
[21-[6].

Typically, according to the number of targets, the related
work can be categorized into two classes: single-target track-
ing [7] and multiple-target tracking [8]. For single-target
tracking, there have been different approaches by considering
the tradeoff between limited resources and certain tracking
accuracy. In [9], a novel weighted distance based sensor
selection method is proposed for target tracking, which aims to
reduce the computational cost while reserving certain tracking
accuracy. An adaptive activation algorithm is given in [10] for
dynamically activating the sensors. Another adaptive sensor
scheduling scheme, is proposed in [11] where the distributed
multi-sensor scheduling scheme is considered for collaborative
target tracking. On the other hand, multiple-target tracking
is widely encountered in many real applications and hence
has been attracting the interests of many researchers. Some
multiple-target tracking algorithms have been proposed [12],
such as nearest neighbor (NN), probabilistic data associa-
tion (PDA), the joint probabilistic data association (JPDA),
multiple hypothesis tracking (MHT), Fuzzy Cluster Means
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Fig. 1. Illustration of mobile target tracking with size estimation in ultrasonic
sensor networks

(FCM) and Markov Chain Monte Carlo Data Association
(MCMCDA). In [13], a Markov chain Monte Carlo data
association (MCMCDA) algorithm is presented, which solves
the data association problems arising in multi-target tracking
in a cluttered environment. A distributed data association
algorithm for multi-target tracking is proposed in [14] by
combining joint probabilistic data association and the Kalman
filter based consensus algorithm.

Note that in most of the existing work on target tracking,
the target is considered as a mass point, however, the size of
target may not be neglected in many applications, for example,
vehicles in the battle field, animals in the area [15] [16].
Such size information should be able to help to enhance the
performance of systems. Moreover, it may be further utilized
to help identify and track multiple targets. It should be noticed
that although there have been some related work for estimating
the shape and size of objects e.g., [17], where computer vision
has been used to identify the shape and size, the method is
not suitable for WSNs where the computational capability and
energy supply are always constrained.

Consider a WSN based target tracking system as illustrated
in Fig. 1. where ultrasonic sensors are deployed to measure
the relative distance between the reflection point of non-
cooperative mobile target and the corresponding sensor. Note
that the ultrasonic sensors can obtain the relative distance with
both high accuracy and low cost compared with other kinds of
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measurements, e.g., RSSI, infrared or laser. The shape of target
is approximated by a circle, and the size of targets is assumed
to vary differently. By consecutively measuring the relative
distances between the targets and corresponding sensors, we
aim to accurately identify and track the targets with size
estimation in a recursive way. Our work is categorized into
two parts. First, the algorithm for single-target tracking and
size estimation is proposed by adopting the extended Kalman
filter (EKF). In the second part, a novel target identification
algorithm is presented for deal with the multiple-target case,
which is further combined with the EKF to track multiple
targets and estimate their size at the same time.

The remainder of this paper is organized as follows. The
problem is formulated in Section II. The main results for
target tracking with size estimation are presented in Section III,
including the single-target case and the multiple-target case.
Section IV evaluates the algorithms with extensive simulations.
Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

Let N ultrasonic sensors (indexed from 1 to N) be de-
ployed in the tracking region with the coordinate (x;,y;)(i =
1,2,...,N). First consider one target case without loss of
generality. The shape of target is approximated by a circle,
with the center coordinate (z,y), and the radius r. At each
time step, an ultrasonic sensor s; is scheduled to measure the
Euclidean distance d; between the reflection point of target
and the corresponding sensor itself, with a measurement white
noise v;, then the relative distance can be expressed by

(t = 1,2,.,N), where ||(z;,y:) — (z,y)|| denotes the Eu-
clidean distance between the center of target and sensor s;.

Denote the state of each target as X (k) = [z, &, y, ¥, 7], and
the corresponding estimate as X (k). Note that the size of each
target has been taken in as the state of the target already. The
system dynamics is modeled as follows

X(k+1)=FX(k)+ wg 2)
where
1 7, 0 0 O
0O 1 0 0 O
F = 0 0 1 Ts O 3)
0 0 0 1 0
0O 0 0 0 1

T, is the sampling period of the system. F' is a five-
dimensional state transition matrix which represents the part
of constant velocity and radius. wj, denotes the system noise
which is Gaussian with the covariance matrix Q,

T8/3 T2)2 0 0
22 T, 0 0
Q = cov(wg) = ¢ 0 0 T2/3 T?)2
0 0 T2 T,
0 0 0 0

Q coo o

4)

where ¢ is a known scalar that represents the intensity of
the process noise [11]. o stands for the irregularity of target
surface. The measurement model is nonlinear and given as
follows:

d;(k) = h(X (k), vi ) 5)

where d;(k) is obtained by the i-th sensor at time step k.

Suppose the number of targets is m. Denote the mea-
surement of target j as z;, j € {1,---,m}. Note that
zj(k) € {d;(k)} and the number of measurements is also m
corresponding to different target respectively. Our objective
is to track each target with size estimation in a recursive
way. At each step, given the previous estimates X j(k—1)as
well as the current measurements {d;(k)}, we aim to design
a recursive algorithm so that the following problem can be
solved efficiently:

min  E(ILj=i.. || X;(k) — X](k)\|2)
st. ri(k)=ri(k—1), ri#rji#j (6)
(k) € {dt(k)}a.j = {17 T 7m}

where E(-) is the expected value.

IIT. MAIN RESULT

In the first place, we would like to solve the problem for
the single target case, which is fundamental for our solution of
multi-target case. The Extended Kalman Filter will be adopted
to estimate the states of target recursively. Subsequently, for
the multi-target case, we further propose an efficient target
identification algorithm so that the each target can be identified
and tracked with size estimation.

A. Single-Target Tracking with Size Estimation

In this scenario, according to Eq. (1), the measurement
function h is nonlinear and can be expressed as:

di(k) = [|(zi(k), yi(k)) = (zc(k), ye (k)| —re(k)+vi(k) (7)

(t € {1,2,...,N}, where (z.(k),y.(k)),r.(k) denote the
center and radius of target at time step k respectively, and
v;(k) denotes the measurement noise of sensor s; with zero
mean and covariance R. The corresponding Jacobian matrix
Hj, can be calculated by:

Hy=( J ouly odiy suy ouih ) )
where
0di(k) _ ze(k) —@i(k) ©
Ozc(k) — \/(ze(k) — (k)2 + (ye(k) — yi(k))?
adi(k) _ ye(k) — yi(k) (10,
Oe(k)  /(we(k) — (k)2 + (ye(k) — i (k))?
k od;(k od; (k
ax(<)> ayik;:(} 3Tc§k;:_1 (n

(i = 1,2,..,N). Then the states of target can be estimated
by using the EKF algorithm, which mainly consists of the
following two parts:



Time Update (Prediction):

X, =FXyp 1 (12)

P =FP, FT +Q (13)
Measurement Update (Correction):

Ky =P Hl (H Py HY + VRV (14)

X = X + Ki(zx — h(X;,0)) (15)

Py = (I — KyHy) P, (16)

Note that K} is the Kalman filter gain, X & ,)?k are the
priori and posteriori estimates respectively, 13,; , ng represent
the corresponding error covariance matrices. ), R stand for
the covariance matrices for the model and the measurement
respectively.

B. Multiple-Target Tracking with Size Estimation

For multiple targets, one major difficulty is to determine
the correct measurement for the corresponding target. In this
paper, a novel target identification algorithm is proposed to
identify the targets by utilizing the additional information,
i.e., the differences of the size of targets. For simplicity, the
algorithms for two targets case will be presented. The results
are not difficult to extend for the case of more than two targets.

Suppose the estimate for the ¢-th target has been obtained
as X;(k—1) at time step k— 1, and if the measurement of the
j-th sensor is assigned to the i-th target, then we are able to
track target ¢ and estimate the size at time step k. Moreover,
it is straightforward to define the evaluation function J;; as
follows:

Jij = [ (k) — &i5(k — D))* + [95(k) — 95(k — 1)]?
+ [fij (k) — 75 (k — D> (17)

where ¢ = 1,2; 7 = 1, 2, which denote the serial number of the
targets and candidate measurements respectively, for example,
Ji2 denotes the evaluation function of the first target related
to the second measurement. Z;;(k), 9;;(k), 7i; (k) denote the
optimal estimated coordinate and radius of the i-th target
calculated by the j-th measurement using EKF at step k. Since
the target will not move too far away from its previous position
and the size keeps constant, J;; can be utilized to decide the
correct pair of target and measurement at each time step. The
details for target identification are summarized in Algorithm
1.

Once the targets have been distinguished, the remaining
problem is similar to the single-target case which has been
solved previously. It should be noted that in order to guarantee
successful target identification with high accuracy, we need a
certain amount of information about the targets at the initial
stage of Algorithm 1. Specifically, two typical scenarios are
as follows.

The first scenario is that the initial states of targets are
known to the estimator with high accuracy. This is possible
since we can deploy a small number of smart sensors which are
able to accurately distinguish and estimate the states of targets

Algorithm 1 Targets Identification Algorithm

1: Input: candidate measurements by corresponding sensors

2: Output: the state of the targets

3: Inmitialization: X (0), X2(0);

4: for target moves in the tracking region do

5:  step 1: calculate the current state of each target with candidate
measurements respectively by EKF.

6: step 2: calculate evaluation function J;;

7:  step 3: decision-making

8: if J11 <= Ji2 and Jo1 >= J2> then

9: target 1 selects the first measurement;

10: target 2 selects the second measurement;

11:  end if

12: if Ji1 > Ji2 and J21 < Joo then

13: target 1 selects the second measurement;

14: target 2 selects the first measurement;

15:  end if

16: if J11 < Ji2 and J21 < Joo then

17: if J12/J11 >= J22/J21 then

18: target 1 selects the first measurement;

19: target 2 is forced to select the second measurement;
20: else

21: target 1 is forced to select the second measurement;
22: target 2 selects the first measurement;

23: end if

24:  end if

25: if J11 > Ji2 and Jo1 > Joo then

26: if J11/J12 >= J21/J22 then

27: target 1 selects the second measurement;

28: target 2 is forced to select the first measurement;
29: else

30: target 1 is forced to select the first measurement;
31: target 2 selects the second measurement;

32: end if

33:  endif

34:  step 4: calculate the current optimal estimate of each target
35: end for

within their neighborhood. In the second scenario, the targets
enter the region in succession and the time intervals between
their entering are sufficient for the estimate to converge. Take
the two-target case as an example. Suppose one target has
entered the region for a certain period so that the estimate has
converge to the steady state. Then there should be no problem
to apply Algorithm 1 if a new target enters afterwards. The
effectiveness of Algorithm 1 under different scenarios will be
demonstrated in the simulation part.

IV. SIMULATION RESULTS

In this section, extensive simulations are conducted to
validate the performance of our method. The tracking region
is set to be 200 x 200cm? square area and covered by 8 range
ultrasonic sensors as shown in Fig 2. Suppose the target moves
along a circle with center coordinate (xo,yo) and radius ro,
and then the actual center coordinate (zy,yx) of the target at
time step k can be obtained as

{ Zp = To + rocos(wk) (18)

Yk = Yo + rosin(wk)
where w is the angular velocity of the target. Then the
measurement of sensors can be obtained according to Eq.
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Fig. 3. The comparison of the estimate and true state of single-target tracking

(7). In simulation, the angular velocity w of moving target
is 0.15 rad/s, the sampling period of sensors is ls, and
the measurement noise covariance R is 1. The statistical
simulation results for both single-target case and two-target
case are done over 1000 independent trails.

For the single target case, using the algorithm depicted in
section III, one typical simulation result is shown in Fig. 2
and 3. The statistical result for the trace of error covariance is
shown in Fig. 4, which is an average over 1000 independent
trials. Note that the estimates for the coordinates both converge
to the steady state after about 10 steps, which demonstrates the
efficiency of proposed algorithm. Furthermore, the estimate
of radius r also approaches to the true value quickly as
expected. It should be noted that the common kalman filter
based tracking algorithm will treat the reflecting point as the
center of target as it does not take the size of target into
consideration, which will worsen the tracking accuracy.

For the two-target case, we consider two typical scenarios.
In the first scenario, the initial states of targets are known to
the estimator. Let the two targets move according to their own
trajectories and not collide each other. By using Algorithm
1, we are able to successfully identify and track them in a
recursive way. One typical simulation result is shown in Fig.
5, and an average trace of error covariance is depicted in Fig.
6. It can be observed that the two targets can be identified
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Fig. 4. The average trace of error covariance in the single-target tracking
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Fig. 5. The trajectories in the first scenario of two-target tracking

effectively and tracking performances of both targets are also
accurate. We also test the correct decision rate of Algorithm
1, which is 98.3% over 1000 independent trials.

For the second scenario, one target appears in the region
from the initial time and moves in a circle. At the 40-th time
step, the second target enters the region. By using Algorithm
1, one typical trial is shown in Fig. 7 and 8. The statistical
result for the trace of error covariance is shown in Fig. 9. It
can be observed that for the initial 40 steps, the estimate of
the first target converges to the steady state effectively which
is similar to the single-target case. Furthermore, there is also
no obvious disturbance for the estimates of the first target
once the second target enters into the region, and the tracking
performance of the second target itself is also quite accurate.
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Fig. 6. The average trace of error covariance in the first scenario of two-target
tracking
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For this scenario, the correct decision rate of Algorithm 1 over
1000 independent trials is around 92.6%.

V. CONCLUSION

We have studied the tracking of targets with size estimation
in wireless sensor networks. For the single-target case, by
adopting the EKF algorithm, an efficient algorithm has been
proposed for estimating the target position and size simulta-
neously. For the multi-target case, a target identification al-
gorithm has been given by minimizing the consecutive square
error based on the previous estimate and current measurements
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Fig. 9. The average trace of error covariance in the second scenario of
two-target tracking

so that we are able to track each target and estimate the size in
a recursive way. Extensive simulations have been conducted
to evaluate the effectiveness of our algorithms.
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