
Time Synchronization in WSNs: A Maximum Value Based Consensus

Approach

Jianping He, Peng Cheng, Ling Shi and Jiming Chen

Abstract— This paper proposes a novel synchronization algo-
rithm for wireless sensor networks (WSNs), the Maximum Time
Synchronization (MTS), which is based on maximum value
consensus approach. The main idea is to maximize the local
information to achieve a global synchronization. Compared
with the existing consensus-based synchronization protocols, the
main advantages of our protocol include: i) a faster convergence
speed such that the synchronization can be completed in a
finite time; ii) simultaneous compensation for both the skew
and the offset. We provide a rigorous proof of convergence
to global synchronization and also give the upper bound of
the convergence time. Moreover, the protocol is completely
distributed, asynchronous, and robust against packet losses,
nodes failure and the addition of new nodes. Some numerical
examples are presented to demonstrate the efficiency of our
protocol.

I. Introduction

Time synchronization is critical for many applications in

wireless sensor networks, such as mobile target tracking,

event detection, speed estimating, environment monitoring,

etc. [1], [2]. It is essential for many applications in wireless

sensor networks that all sensor nodes have a common time

reference. Moveover, the clock synchronization also help to

save energy in a WSN, as it provides the possibility to set

nodes into the sleeping mode [3].

The authors of [4] propose a synchronization algorithm

called Reference-Broadcast Synchronization (RBS) for one-

hop time synchronization, where a node is selected as the

reference node and then broadcasts a reference message to

all the other nodes for synchronization. [5] aims to provide

network-wide clock synchronization, and the authors propose

a Timing-sync Protocol for Sensor Networks (TPSN). It first

elects a root node and builds a spanning tree of the network,

then the nodes are synchronized to their parents in the

tree. However, the TPSN protocol can only compensate the

relative clock offset but not the clock skew. Therefore, TPSN

needs to send excessive messages for re-synchronization.

In order to overcome these shortcomings, [6] proposes the

Flooding-clock synchronization Protocol (FTSP). The main

idea is that the algorithm elects a root node and then the

root node periodically floods its current time into the tree

network. Using a Proportional-Integral control principle, [7]

proposes a Feedback Based Synchronization (FBS) scheme

Jianping He, Peng Cheng and Jiming Chen are with State Key Lab.
of Industrial Control Technology, Zhejiang University, Hangzhou 310027,
China {jphe,pcheng,jmchen}@iipc.zju.edu.cn

Ling Shi is with the Department of Electric and Computer Engineering,
Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong eesling@ust.hk

to compensate the clock drift caused by both internal per-

turbation and external disturbance. It should be noted that

all these three algorithms need a reference node or root

node. Furthermore, TPSN , FTSP and FBS are tree-based

synchronization, which are fragile to link or node failures.

The detailed survey for clock synchronization protocols in

wireless sensor networks can be found in [1] and [8].
On the other hand, consensus algorithms have been used

for solving problems in autonomous networks including

clock synchronization in WSNs. A consensus-based clock

synchronization protocol has three main advantages. First,

the consensus-based clock synchronization protocol can

work in a distributed way. Therefore it does not require

a tree topology or a root node as a reference [9], [10];

Second, based on the consensus algorithm, more accurate

synchronized clocks, especially for neighboring nodes, may

be obtained for the whole network [11]; Lastly, the consen-

sus algorithms can compensate the skew differences among

nodes.
Existing consensus distributed algorithms can be classified

into two categories, synchronous algorithms, e.g., [12], [13],

[14] and asynchronous ones, e.g., [15], [16], [17]. These

two classes of consensus algorithms have been studied

extensively for clock synchronization in wired or wireless

ad-hoc and peer-to-peer networks, e.g., [3], [9]–[11], [18],

[19]. Usually, the node adjusts its clock by a mutually agreed

consensus value after each node has learned the clock values

of all its neighbors. For instance, [11] proposes a Gradient

Time Synchronization Protocol (GTSP) which is designed

to provide synchronized clocks between neighbors, and this

protocol is mainly based on a synchronous consensus algo-

rithms [20]. Besides, [10] proposes an Average TimeSynch

(ATS) protocol, which is built on an asynchronous consensus

algorithm. The main idea is to average local information

to achieving a global agreement on a specific quantity of

interest.
Note that the converging speed of the time synchronization

is a critical problem in practice, while most of existing

consensus based protocols, which aim to reach an average

value within the network, are time-consuming. Additionally,

as pointed by [10], the exact value of the synchronized clock

itself is not so important as long as the consensus has been

achieved. Hence it is of great interest to develop a protocol

which owns much faster converging time while maintaining

the advantages of consensus.
The main contributions of this paper can be summarized

as follows:

1. A novel time synchronization protocol is proposed,

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 7882

which is based on a maximum value based consensus

algorithm. The protocol is completely asynchronous

and distributed, hence robust to packet losses, node

failure, replacement or relocation.

2. We provide a rigorous proof of the convergence. Fur-

thermore, we are able to prove that the algorithm

will converge in a finite time and we present an

upper bound analytically (of a linear complexity of the

number of nodes), which is much lighter than those

average based consensus algorithms.

3. Extensive simulations are conducted to prove the ef-

fectiveness for both static and dynamic graphs.

The rest of this paper is organized as follows. In Section

II, the clock model for wireless sensor is introduced. The

maximum valued based protocol for time synchronization

is proposed In Section III, where a rigorous proof for its

convergence is also provided as well as the analysis of

its implementation of the MTS. The simulation results are

shown in Section IV. Finally, Section V concludes this paper.

II. Clock model

By refereing to [10], [11], Each sensor node i in a WSN is

equipped with a hardware clock, and its clock reading τi(t)
at time t is given by

τi(t) = ait + bi, (1)

where ai is the hardware clock skew which determines

the clock speed and bi is the hardware clock offset. It is

reasonable to assume that each hardware clock skew ai

satisfies

1 − p ≤ ai ≤ 1 + p, (2)

where 0 ≤ p < 1 is a constant. It has been pointed out

that ai and bi can not be computed as the absolute reference

time t is not available to the sensor nodes [10]. However, by

comparing the local clock reading of one node i with another

local clock reading of node j, we can obtain a relative clock

between them, given by:

τi(t) =
ai
a j
τ j(t) + (bi − ai

a j
b j) = a jiτ j(t) + b ji (3)

The objective of clock synchronization in this paper is to

synchronize all the nodes with respect to a common clock,

given as:

τv(t) = avt + bv. (4)

It is known that the value of hardware clock can not

be adjusted manually, because other hardware components

may depend on a continuously running hardware clock in

WSNs [11]. Hence, logical clock is proposed to represent

the synchronized time. Notice that the nodes can convert

the hardware clock reading into a logical clock value, thus

consider a logical clock value Li(t) which is a linear function

of hardware clock τi(t),

Li(t) = âiτi(t) + b̂i = âiait + âibi + b̂i (5)

where âi is the relative logical clock skew and b̂i is the clock

offset between the hardware clock and the logical clock.

There always exist (âi, b̂i) for each logical clock value Li(t)
such that

Li(t) = τv(t), i = 1, 2, ...,N (6)

where N is the total number of nodes in WSN. Therefore,

our goal in this paper is to design a consensus-based clock

synchronization algorithm to find (âi(k), b̂i(k)) to each node

i in a WSN, such that{
limk→∞ âi(k)ai = av,

limk→∞ âi(k)bi + b̂i(k) = bv,
(7)

where av and bv are two constants. As pointed by [10], the

real values of (av; bv) are not important; rather, it is important

that all clocks converge to one common virtual reference

clock, and the final parameters (av; bv) only depends on

the initial condition and the communication topology of the

WSN.

Remark 1
Linear clock model is widely used for time synchronization

in WSNs [9], [10], [19]. It should be noticed that ai and

bi may be slowly time-varying in practice. However, as

long as the synchronization algorithm can achieve certain

accuracy in a short time, we can restart the algorithm once

the synchronization error exceeds a given bound.

III. Main Results

We model a dynamic wireless sensor network (WSN) as

a undirected graph G(t) = (V,E(t)) at each time t, where

V = {i : i = 1, ...,N} is the set of nodes (sensors) and E(t) ⊆
{(i, j) : i, j ∈ V, i � j} represents the set of communication

links (edges) at time t. The set of neighbors of node i ∈ V is

denoted by Ni = { j ∈ V : (i, j) ∈ E}. Throughout this paper,

we assume the graph G(t) of WSN satisfies the following

two assumptions:
Assumption 1 There exists an integer B ≥ 1 such that the

undirected graph

(V,E(kB) ∪ E(kB + 1) ∪ ... ∪ E((k + 1)B − 1))

is connected for all nonnegative integers k [13].
Assumption 2 For any edge, the time of this edge stays

in graph is no less than a small constant T0.
It is assumed that there is no transmission or reception

delay, and the process and measurement noise is not taken

into account for simplicity of statement.

A. Synchronization Algorithm
From (7), it can be observed that it is necessary to syn-

chronize both the clock skew and offset. Most of the existing

algorithms consider these two parts separately [10], [11],

which means that in their algorithms the offset compensation

starts after the skew compensation has completed.
Two key parameters are introduced before we present

the details of the algorithm. In WSNs, it is not difficult to

set a constant T for each node in advance that each node

broadcasts its message to all its neighbors by a T based on

its own hardware clock.

7883

Definition 1
Give a constant period, T , the preudo-period Ti is defined

as [10],

Ti =
T
ai
, i ∈ V. (8)

Since the clock skew ai, i ∈∈ V are slightly different in

general, the preudo period Ti would differ for each node.

The second key parameter is called relative skew, which is

defined as follows:

Definition 2
Assume (τi(t1), τ j(t1)) and (τi(t2), τ j(t2)) are two pairs hard-

ware clock reading of nodes i and j. The relative skew ai j

is defined as

ai j =
τ j(t2) − τ j(t1)

τi(t2) − τi(t1)
, i, j ∈ V, (9)

where t1 � t2.

Since each hardware clock model is a linear function of

t, the relative skew ai j satisfies ai j =
a j

ai
. Note that each

hardware clock skew ai is time-invariant in model (1), so

the relative skew ai j can be obtained directly by (9). In fact,

when a node i receive time message τ j(t1) from node j, it

reads its current clock reading τi(t1) and stores (τi(t1), τ j(t1));

meanwhile when the node i receives the time message from

node j at the second time, the relative skew ai j can be

obtained from (9) based on these two pairs of historical

records.

Algorithm 1 : Maximum Time Synchronization
1: Given the initial conditions âi = 1 and b̂i = 0 for i = 1, 2, ...,N,

set the common broadcast period T to each node.
2: If the current hardware clock reading of node i, i ∈ V satisfies

equation
τi(t)

T ∈ N+ (where N+ is the set of positive integer),
then the node i broadcasts its local hardware clock reading τi(t)
and (âi(t), b̂i(t)) to its neighbors.

3: If a node i ∈ V receive the packet from its neighbor node j at
time t1, then record its local hardware clock reading τi(t1) and
record the packet information as [τ j(t1), (â j(t1), b̂ j(t1))].

4: If the node i has a historical record [τi(t0), τ j(t0)], then compute
ai j by

ai j =
τ j(t1)−τ j(t0)

τi(t1)−τi(t0)
(10)

and compute di by di =
ai j â j

âi
. After this delete the record

[τi(t0), τ j(t0)].
5: If di > 1, then

âi ← ai jâ j,

b̂i ← â j(t1)τ j(t1) + b̂ j − ai jâ jτi(t1);
(11)

If di = 1, then

b̂i ← max
k=i, j
{âk(t1)τk(t1) + b̂k} − âiτi(t1). (12)

6: Store the time information [τi(t1), τ j(t1)].

In our algorithm, each node i broadcasts its current hard-

ware clock reading τi(t), the current skew compensation

âi and offset compensation b̂i to its neighbor nodes by its

own period. However, it is not assumed that the message is

guaranteed to be received each time. When the nodes receive

these messages from their neighboring nodes, they will adjust

their logical clocks accordingly. Eventually, by the iteration

of the algorithm, the logical clock of all nodes will equal to

the maximum hardware clock, i.e., maximum-consensus. We

therefore call the synchronization algorithm Maximum Time

Synchronization (MTS). Through our MTS algorithm, the

skew and offset compensation can be applied simultaneously

and completed at the same time.

Remark 2
In MTS, the common broadcast period T should satisfy

T
1−p ≤ T0 to ensure that each node has at least one broadcast

when it contacts with the other nodes. Otherwise, some

sensor nodes of the WSNs may not able to receive packets

from the other sensor nodes all the time, which makes the

global clock synchronization impossible.

Remark 3
For an arbitrary node i, its hardware clock reading should

satisfy τi(ti
k) = kT , where ti

k denotes the reality time at k-th

broadcast instant. Thus, we have

ti
k =

kT − bi

ai
, i ∈ V, (13)

which in turn means Ti = ti
k+1
− ti

k =
T
ai

. Therefore, (8) is

satisfied all the time.

B. Convergence of MTS

Before proving the convergence of our algorithm, we

would like to first introduce some mathematical tools. Define

amax = max
i∈V

ai. We use Vmax to denote the set of these nodes

whose clock skews are equal to amax. Define bmax = max
i∈Vmax

bi.

Let av = amax and bv = bmax, then the common clock (4)

then can be rewritten as:

τv(t) = avt + bv = amaxt + bmax. (14)

Let Vv(t) be the set of nodes whose logical clock skew and

offset are equal to amax and bmax at time t, respectively.

Clearly, the logical clock of nodes in Vv(t) are equivalent

to the common clock τv(t) (14). Since the initial condition

satisfies âi = 1 and b̂i = 1 for i ∈ V in MTS, according to

the definition of Vv(t), it is clear to see that there will be at

least one node whose hardware clock equal to the common

clock at initial time, i.e., Vv(0) � ∅.

Let Nv(t) be the number of nodes belonging to the set

Vv(t) at time t. Define a function V(t) as follows

V(t) = N − Nv(t). (15)

Since Vv(0) � ∅, then we have V(0) ≤ N −1. The following

result on V(t) can be obtained.

Lemma 1
V(t) = 0 if and only if Li(t) = τv(t) for ∀i ∈ V.

7884

Proof : From (15), V(t) = 0 if and only if Nv(t) = N, which
is equivalent to that i ∈ Vv(t) if i ∈ V. By the definition of
Vv(t), it is equivalent to Li(t) = τv(t),∀i ∈ Vv(t). The proof is
completed.

Lemma 1 is equivalent to that V(t) = 0 if and only if

Vv(t) = V.

Theorem 1

Let the common synchronization period T satisfy T
1−p < T0,

by using Algorithm MTS, the skew and offset will converge

and satisfy {
limk→∞ âi(k)ai = av,

limk→∞ âi(k)bi + b̂i(k) = bv,
(16)

where av = amax and bv = bmax.

Proof : By Lemma 1 and according to the definition of τv(t) in
(14), it is obvious that once V(t) = 0 the skew and offset of
all logical clocks would equal to amax and bmax accordingly.
Hence, it is enough to prove

lim
k→∞

V(k) = 0 (17)

We first prove V(t) is non-increasing. For any arbitrary node
i ∈ Vv(t), its skew âi(t)ai and offset âi(t)bi+ b̂i(t) equal to amax
and bmax, respectively. Hence âi(t)ai ≥ â j(t)aj holds for ∀ j ∈
V, which means

ai j â j
âi
≤ 1 hold for ∀ j ∈ V. In other words,

this node i will not update its logical clock skew any more as
di ≤ 1 will always hold for k ≥ t. And, the equation âi(t)bi +
b̂i(t) = bmax ensures that the node i has the largest logical
clock offset by the definition of Vv(t), which is equivalent to
Li(t) = τv(t),∀i ∈ Vv(t). Therefore, each node i in Vv(t) will
keep its logical clock skew and offset, which means that Nv(t)
is non-decreasing. Thus V(t) is non-increasing.

Assume V(t) > 0 at time t (where t = mB,m ∈ {0,N+}).
Then, there is at lease one node in the network which is not
in the set Vv(t). Since Assumption 1 guarantees the network
is connected during any time interval B. Thus in time interval
[t, t + B], there will be at lease an edge (say e(t)) existing
between the node sets Vv(t) and V−Vv(t), and Assumption
2 can ensure e(t) stays in the network more than T0 ; and from
condition T

ai
≤ T

1−p , i ∈ V, we can get Ti < T0, i ∈ V. Then,
there is at least one packet transmitted from one node in set
Vv(t) to one node in V −Vv(t) in time interval [t, t + B] by
communication link e(t). Similarly, in the next time interval
[t+B, t+2B], there is also at least one packet can be transmitted
from one node in set Vv(t+B) to one node in V−Vv(t+B) by
the edge e(t+B) which connects Vv(t+B) and V−Vv(t+B).
Hence, in any a time interval [t+kB, t+(k+1)B] for k = 0, 1, ...,
there is at least one packet transmitted from one node i in set
Vv(t+kB) to one node j inV−Vv(t+kB) by an edge e(t+kB).
Since the number of nodes in both Vv(t) and V −Vv(t) are
finite, then there exists a k0 such that node i in V − Vv(t)
receives packets from same node j in Vv(t) at time t + k0B
for the second time. Then, according to MTS, the node i will
update its logical clock and then the node i and j will have
the same logical clock, which means that node i belongs to
Vv(t + k0B). Thus Nv(t + k0B) = Nv(t)+ 1, i.e., V(t + k0B) will
be satisfied V(t + k0B) = V(t) − 1.

Notice V(0) ≤ N − 1 is finite, therefore limk→∞ V(k) = 0.

Theorem 2

If the common synchronization period T satisfies 2T
1−p < T0

and the skew and offset are updated using MTS, then the

convergence time of the MTS satisfies:

Tcon ≤ B(N − 1), (18)

where Tcon is the convergence time of the MTS algorithm.

Proof : From the proof of the Theorem 1, we known V(t) is a
non-increasing function. Assume V(t) > 0 at time t (where
t = mB,m ∈ {0,N+}). Then, at each time interval [t, t + B],
Assumption 1 ensures that there is at least an edge {i, j} which
connects one node i, i ∈ V − Vv(t) and node j, j ∈ Vv(t).
Assumption 2 ensures taht this edge {i, j} stays in the network
for more than T0. From 2T

1−p < T0, each real synchronization

period Tl, l ∈ V satisfies Tl <
T0

2
. Hence, the use of MTS, the

node i and j can transmit messages to each other by using
edge {i, j} at least twice between the time interval [t, t + B],
which means that the node i can set its logical clock equal
to the logical clock of node j before time t + B. Hence, we
have i ∈ Vv(t + B), which means V(t + B) = V(t) − 1. Since
V(0) ≤ N − 1, V((N − 1)B) = V(0) − N + 1 ≤ 0.

Therefore, Tcon ≤ B(N − 1) from Lemma 1.

Remark 4
In Theorem 1 and Theorem 2, Assumption 1 is used to

ensure that there are nodes in the set V −Vv(t) which can

receive packets from the nodes in set Vv(t) at each time

interval. This can be guaranteed by a strongly connected

communication graph. Therefore, the condition Assump-

tion 1 can be replaced by

Assumption 1’ There exists an integer B ≥ 1 such that the

undirected graph

(V,E(kB) ∪ E(kB + 1) ∪ ... ∪ E((k + 1)B − 1))

is strongly connected for all nonnegative integers k [13].

C. The Analysis of Implementation of MTS

In this section, we will compare our approach with some

typical consensus based time synchronization methods. It

is not difficult to see that MTS algorithm is distributed,

as every node updates its clock parameters based on the

information received from its neighbor nodes only. In MTS

algorithm, given a common synchronization period T to

all nodes in WSNs which is the same as ATS in [10],

each node i broadcasts packets based on Ti accordingly,

which can ensure that the algorithm is almost asynchronous.

Furthermore, MTS is also robust to the addition of new

nodes, nodes failure, and packet drops. However, these may

affect the convergence time of the algorithm.

Note that different from the common consensus algo-

rithms, the basic idea of our approach is to drive the

logical clocks to the maximum value among all nodes so

that the network can realize time synchronization as the

final clock itself is not important. In the algorithm, each

node i periodically broadcasts a packet containing its local

hardware clock reading τi(t) and its current relative logical

clock skew âi(t) and the offset b̂i(t), and it doesn’t need

any feedback information from its neighbors nodes. And,

the skew and offset compensation can be completed in a

7885

finite time. Compared with the recently consensus-based time

synchronization algorithms, i.e., GTSP [11] and ATS [10],

MTS has two advantages as follows:

1. Both the algorithms GTSP and ATS converge to global

synchronization asymptotically, however, the algorithm

MTS can converge to global synchronization in a

finite time. Furthermore, the convergence time of both

GTSP and ATS depends on the synchronization error,

however, the convergence time of MTS does not.

2. For GTSP and ATS, the offset compensation has to be

started after the skew compensation algorithm has been

completed. However, The offset compensation and the

skew compensation of MTS can be conducted at the

same time, and both can be completed simultaneously.

Due to these two advantages, MTS has a much faster con-

vergence speed than these two consensus-based algorithms.

Energy cost is a major concern in WSNs. As the compu-

tational energy cost is comparably small due to the simple

algorithm, we will focus on the communication energy cost,

which can be measured by the broadcasting times. Let Nc
i be

the number of broadcast which each node i needs to guaran-

tee that the algorithm converges. In the above subsection, we

have obtained the upper bound of convergence time of the

algorithm. Based on Theorem 2, we can get an upper bound

of Nc
i , which is given by

Nc
i ≤ B(N−1)

Ti
, i ∈ V (19)

where Ti is the same as defined in (8). Assume that every

broadcast of all the nodes is with the same amount of energy

E and let Ec be the total energy cost for the synchronization

algorithm to convergence, then

Ec ≤ E
∑

i∈V
B(N−1)

Ti
=

EB(N−1)
T

∑
i∈V

ai (20)

From (20), it is not difficult to see that enlarging common

period T can decrease the upper bound of Ec, but T should

satisfy 2T
1−p ≤ T0. Therefore, one choice of T is

T0(1−p)

2
.

IV. SIMULATION RESULTS

For the simulations, we set â(0) = 1, b̂(0) = 1 and T = 1,

and assume each skew ai of the hardware clock is randomly

selected from the set [0.8, 1.2], the offset bi of each node i
is randomly selected from the set [0, 0.4]. Additionally, we

define two functions as follows:

ds(t) = max
i∈V

(âi(t)ai) −min
i∈V

(âi(t)ai)

do(t) = max
i∈V

(âi(t)bi + b̂i(t)) −min
i∈V

(âi(t)bi + b̂i(t))
(21)

where ds(t) and do(t) denote the maximum difference of

logical skew and of logical offset between any two nodes,

respectively. It is clear that the global time synchronization

is reached if and only if ds(t) = 0 and do(t) = 0.

In the following results, we will compare our synchroniza-

tion algorithm MTS with ATS in [10], since ATS is a typical

distributed and consensus-based synchronization algorithm.

Consider a static ring graph with N = 30 at first. It is well

recognized that the distributed consensus-based algorithms

often converges slowly for a ring graph. In Fig.1, it can

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of broadcast

V
al

ue
 o

f d
s

MTS
ATS

Fig. 1. Comparison between MTS and ATS in static network.

be observed that the skew synchronization is reached by

192 for MTS, while ATS takes more than 3200 to obtain

a comparable accuracy. Additionally, from Fig. 2, it can be

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of broadcast

V
al

ue
s

of
 b

ot
h

d s a
nd

 d
o

Skew
Offset

Fig. 2. Comparison between skew and offset using MTS in static network.

seen that for MTS, the skew and offset synchronization can

be achieved at the same time, i.e., 100 times of tests, and the

average iteration convergence time for MTS is 212, while

ATS takes more than 4257 to ensure ds(t) ≤ 10−4. Fig. 3

20 25 30 35 40 45 50 55 60
0

100

200

300

400

500

600

700

800

900

1000

Number of nodes N

N
um

be
r

of
 b

ro
ad

ca
st

 n
ee

de
d

to
 c

on
ve

rg
e

Fig. 3. The convergence time of MTS.

shows how MTS converges along with the the number of

sensors in the network, which proves the scalability of our

algorithm.

Consider a dynamic graph with N = 50. Assume that the

nodes are randomly deployed in an 1 × 1 areas at initial

time 0, and the maximum communication range of each node

is
√

0.1. We assume that each node may randomly change

its position once in every 20T until the convergence of one

algorithm has been reached. Fig. 4 shows the initial graph

and the final graph of the network. Similarity, as shown in

Fig.5, ds(t) ≤ 10−4 for t ≥ 431 by ATS, however the ds(t)

7886

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. The dynamical networks: the initial graph and final graph.

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of broadcast

V
al

ue
 o

f d
s

MTS
ATS

Fig. 5. Comparison between MTS and ATS in dynamical network.

of MTS decreases to zero when the iteration time t ≥ 46.

Thus, the convergence speed of MTS is much faster than

that of ATS in the dynamical network. Furthermore, Fig. 6

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of broadcast

V
al

ue
s

of
 b

ot
h

d s a
nd

 d
o

Skew
Offset

Fig. 6. Comparison between skew and offset using MTS in dynamic
network.

shows that the do(t) and ds(t) of MTS do converge to 0 at the

same time t = 46 in the dynamical network, which shows

the advantage of MTS also holds for dynamical network.

The average time for MTS is around 47, and is about 545

for ATS to ensure ds(t) ≤ 10−4.

V. CONCLUSION

In this paper, we present a new time synchronization

algorithm for WSN, the Maximum Time Synchronization

(MTS) protocol, which conducts both the skew and offset

compensations simultaneously. The main idea is to drive all

the clocks to the maximum value among the network. It is

proved that the MTS algorithm is guaranteed to converge

within a finite time, which is much lighter than the average

based consensus algorithms. The MTS algorithm is fully

distributed, asynchronous and robust to dynamic network

topologies. Extensive simulations demonstrate the effective-

ness of our approach. Future directions include extending the

idea to more complicated models and experimental validation

of the results.

Acknowledgement

This work by J. He, P. Cheng and J. Chen is partially sup-

ported by the Natural Science Foundation of China (NSFC)

under Grants 61004060 and 60974122, Joint Funds of NSFC-

Guangdong under Grant U0735003, the Natural Science

Foundation of Zhejiang Province under Grant R1100324.

The work by L. Shi is partially supported by HKUST direct

allocation grant DAG11EG06G.

References

[1] B. Sundararaman, U. Buy, and A. D. Kshemkalyani. Clock synchro-
nization for wireless sensor networks: a survey. Ad Hoc Networks,
3(3):281–323, 2005.

[2] S. He, J. Chen, D. Yau, H. Shao, and Y. Sun. Energy-efficient capture
of stochastic events by global- and local-periodic network coverage.
In Proceedings of ACM MobiHoc, pages 155–164, 2009.

[3] Q. Li and D. Rus. Global clock synchronization in sensor networks.
In Proceedings of IEEE INFOCOM, pages 564–574, 2004.

[4] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchro-
nization using reference broadcasts. In Proceedings of ACM OSDI,
2002.

[5] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol
for sensor networks. In Proceedings of SenSys 03, 2003.

[6] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time
synchronization protocol. In Proceedings of SenSys 04, 2004.

[7] J. Chen, Q. Yu, Y. Zhang, H.-H. Chen, and Y. Sun. Feedback based
clock synchronization in wireless sensor networks: A control theoretic
approach. IEEE Transactions on Vehicular Technology, 59(6):2963–
2973, 2010.

[8] Y. R. Faizulkhakov. Time synchronization methods for wireless
sensor networks: A survey. Programming and Computing Software,
33(4):214–226, 2007.

[9] C.D. Liao and P. Barooah. Time-synchronization in mobile sensor
networks from difference measurements. In Proceedings of CDC,
2010.

[10] L. Schenato and F. Fiorentin. Average timesynch: a consensus-
based protocol for time synchronization in wireless sensor networks.
Automatica, 47(9):1878–1886, 2011.

[11] S. Philipp and W. Roger. Gradient clock synchronization in wireless
sensor networks. In Proceedings of IPSN, 2009.

[12] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and
cooperation in networked multi-agent systems. Proceedings of the
IEEE, 95(1):215–233, 2007.

[13] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis. On
distributed averaging algorithms and quantization effects. IEEE
Transactions on Automatic Control, 54(11):2506–2517, 2009.

[14] J. Chen, X. Cao, P. Cheng, Y. Xiao, and Y. Sun. Distributed
collaborative control for industrial automation with wireless sensor
and actuator networks. IEEE Transactions on Industrial Electronics,
57(12):4219–4230, 2010.

[15] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip
algorithms. IEEE Transactions on Information Theory, 52(6):2508–
2530, 2006.

[16] P. Frasca, R. Carli, F. Fagnani, and S. Zampieri. Average consensus
by gossip algorithms with quantized communication. In Proceedings
of IEEE CDC, 2008.

[17] A. Kashyap, T. Basar, and R. Srikanta. Quantized consensus. Auto-
matica, 43(7):1192–1203, 2007.

[18] A. Giridhar and P. R. Kumar. Distributed clock synchronization over
wireless networks: Algorithms and analysis. In Proceedings of IEEE
CDC, pages 4915–4920, 2006.

[19] N. Marechal, J.B. Pierrot, and J.M. Gorce. Fine synchronization
for wireless sensor networks using gossip averaging algorithms. In
Proceedings of IEEE ICC, pages 4963–4967, 2008.

[20] R. Olfati-Saber and R. M. Murray. Consensus problems in networks
of agents with switching topology and time-delays. IEEE Transactions
on Automatic Control, 49(9):1520–1533, 2004.

7887

